Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cureus ; 15(5): e38820, 2023 May.
Article in English | MEDLINE | ID: covidwho-20240300

ABSTRACT

Introduction Reports are rare on the usefulness of the FilmArray Respiratory Panel 2.1 (FARP) using lower respiratory tract specimens. This retrospective study assessed its use, as part of a comprehensive infectious disease panel, to detect the viral causes of pneumonia using bronchoalveolar lavage samples from immunosuppressed patients. Methods This study included immunocompromised patients who underwent bronchoalveolar lavage or bronchial washing by bronchoscopy between April 1, 2021, and April 30, 2022. The collected samples were submitted for comprehensive testing, including FARP test; reverse transcription polymerase chain reaction (RT-PCR) for cytomegalovirus, varicella-zoster virus DNA, and herpes simplex virus; PCR for Pneumocystis jirovecii DNA; antigen testing for Aspergillus and Cryptococcus neoformans; and loop-mediated isothermal amplification method for Legionella. Results Out of 23 patients, 16 (70%) showed bilateral infiltrative shadows on computed tomography and three (13%) were intubated. The most common causes of immunosuppression were anticancer drug use (n=12, 52%) and hematologic tumors (n=11, 48%). Only two (9%) patients tested positive for severe acute respiratory syndrome coronavirus 2 and adenovirus by FARP. Four patients (17%) tested positive for cytomegalovirus by RT-PCR, but no inclusion bodies were identified cytologically. Nine (39%) patients tested positive for Pneumocystis jirovecii by PCR, but cytology confirmed the organism in only one case. Conclusions Comprehensive infectious disease testing, performed using bronchoalveolar lavage samples collected from lung lesions in immunosuppressed patients, showed low positive detection by FARP. The viruses currently detectable by FARP may be less involved in viral pneumonia diagnosed in immunocompromised patients.

2.
Cureus ; 15(4): e38024, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20238678

ABSTRACT

Objectives Immunocompromised patients, specifically those with solid organ transplants or cancer on chemotherapy, are at particularly high risk of severe pneumonia and opportunistic infections. In select patients, bronchoalveolar lavage (BAL) is performed to provide high-quality samples for analysis. We compare BioFire® FilmArray® Pneumonia Panel (BioFire Diagnostics, Salt Lake City, Utah, United States), a multiplex polymerase chain reaction (PCR) assay, with standard of care diagnostics in BAL samples from immunocompromised patients to identify opportunities for this test to affect clinical decision making. Methods Patients hospitalized with pneumonia based on clinical and radiographic findings who underwent evaluation with bronchoscopy between May 2019 to January 2020 were reviewed. Among those patients undergoing bronchoscopy, those who were immunocompromised were selected for inclusion in the study. BAL specimens submitted to the microbiology laboratory were chosen based on as part of the internal validation of the panel in comparison with sputum culture at our hospitals. We compared the outcomes of the multiplex PCR assay with traditional culture methods and evaluated the role of PCR assay in de-escalating antimicrobial therapy. Results Twenty-four patients were identified for testing with the multiplex PCR assay. Of the 24 patients, 16 were immunocompromised, all with solid or hematological malignancy or a history of organ transplant. Seventeen individual BAL samples from the 16 patients were reviewed. BAL culture results and the multiplex PCR assay were in agreement in 13 samples (76.5%). In four cases, the multiplex PCR assay identified a possible causative pathogen not detected by standard workup. The median time to de-escalation of antimicrobials was three days (interquartile range (IQR) 2-4) from the day of collection of the BAL samples. Conclusions Studies have established the additive role of multiplex PCR testing in addition to traditional diagnostic tools like sputum culture in diagnosing the etiology of pneumonia. Limited data exist specifically looking at immunocompromised patients, in whom a timely and accurate diagnosis is particularly important. There is a potential benefit for performing multiplex PCR assays as an additive diagnostic tool in BAL samples for these patients.

3.
Diagnostics (Basel) ; 13(6)2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2310684

ABSTRACT

Invasive pulmonary aspergillosis is associated with high mortality. For diagnosis, galactomannan-antigen in serum and bronchoalveolar lavage fluid is recommended, with higher sensitivity in bronchoalveolar lavage fluid. Because of invasiveness, bronchoalveolar lavage might be withheld due to patients' or technical limitations, leading to a delay in diagnosis while early diagnosis is crucial for patient outcome. To address this problem, we performed an analysis of patient characteristics of intubated patients with invasive pulmonary aspergillosis with comparison of galactomannan-antigen testing between non-directed bronchial lavage (NBL) and bronchoalveolar lavage fluid. A total of 32 intubated ICU patients with suspected invasive pulmonary aspergillosis could be identified. Mycological cultures were positive in 37.5% for A. fumigatus. Galactomannan-antigen in NBL (ODI 4.3 ± 2.4) and bronchoalveolar lavage fluid (ODI 3.6 ± 2.2) showed consistent results (p-value 0.697). Galactomannan-antigen testing for detection of invasive pulmonary aspergillosis using deep tracheal secretion showed comparable results to bronchoalveolar lavage fluid. Because of widespread availability in intubated patients, galactomannan-antigen from NBL can be used as a screening parameter in critical risk groups with high pretest probability for invasive aspergillosis to accelerate diagnosis and initiation of treatment. Bronchoalveolar lavage remains the gold standard for diagnosis of invasive aspergillosis to be completed to confirm diagnosis, but results from NBL remove time sensitivity.

4.
Mayo Clin Proc Innov Qual Outcomes ; 7(2): 93-98, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2280745

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has led to considerable morbidity and mortality across the world. Lung transplant is a viable option for a few with COVID-19-related lung disease. Whom and when to transplant has been the major question impacting the transplant community given the novelty of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe a pitfall of presumed prolonged shedding of SARS-CoV-2 in a patient with COVID-19 associated acute respiratory distress syndrome leading to COVID-19 pneumonia after lung transplant. This raises concerns that replication-competent SARS-CoV-2 virus can persist for months post-infection and can lead to re-infection of grafts in the future.

5.
BMC Infect Dis ; 23(1): 19, 2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2196095

ABSTRACT

BACKGROUND: As the COVID-19 pandemic strains healthcare systems worldwide, finding predictive markers of severe courses remains urgent. Most research so far was limited to selective questions hindering general assumptions for short- and long-term outcome. METHODS: In this prospective single-center biomarker study, 47 blood- and 21 bronchoalveolar lavage (BAL) samples were collected from 47 COVID-19 intensive care unit (ICU) patients upon admission. Expression of inflammatory markers toll-like receptor 3 (TLR3), heme oxygenase-1 (HO-1), interleukin (IL)-6, IL-8, leukocyte counts, procalcitonin (PCT) and carboxyhemoglobin (CO-Hb) was compared to clinical course. Clinical assessment comprised acute local organ damage, acute systemic damage, mortality and outcome after 6 months. RESULTS: PCT correlated with acute systemic damage and was the best predictor for quality of life (QoL) after 6 months (r = - 0.4647, p = 0.0338). Systemic TLR3 negatively correlated with impaired lung function (ECMO/ECLS: r = - 0.3810, p = 0.0107) and neurological short- (RASS mean: r = 0.4474, p = 0.0023) and long-term outcome (mRS after 6 m: r = - 0.3184, p = 0.0352). Systemic IL-8 correlated with impaired lung function (ECMO/ECLS: r = 0.3784, p = 0.0161) and neurological involvement (RASS mean: r = - 0.5132, p = 0.0007). IL-6 in BAL correlated better to the clinical course than systemic IL-6. Using three multivariate regression models, we describe prediction models for local and systemic damage as well as QoL. CO-Hb mean and max were associated with higher mortality. CONCLUSIONS: Our predictive models using the combination of Charlson Comorbidity Index, sex, procalcitonin, systemic TLR3 expression and IL-6 and IL-8 in BAL were able to describe a broad range of clinically relevant outcomes in patients with severe COVID-19-associated ARDS. Using these models might proof useful in risk stratification and predicting disease course in the future. Trial registration The trial was registered with the German Clinical Trials Register (Trial-ID DRKS00021522, registered 22/04/2020).


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/complications , Quality of Life , Toll-Like Receptor 3 , Interleukin-6 , Interleukin-8 , Procalcitonin , Prospective Studies , Pandemics , Inflammation , Respiratory Distress Syndrome/etiology , Disease Progression
6.
Toxicol Rep ; 9: 1357-1368, 2022.
Article in English | MEDLINE | ID: covidwho-1895464

ABSTRACT

In recent years, new nicotine delivery methods have emerged, and many users are choosing electronic cigarettes (e-cigarettes) over traditional tobacco cigarettes. E-cigarette use is very popular among adolescents, with more than 3.5 million currently using these products in the US. Despite the increased prevalence of e-cigarette use, there is limited knowledge regarding the health impact of e-cigarettes on the general population. Based on published findings by others, E-cigarette is associated with lung injury outbreak, which increased health and safety concerns related to consuming this product. Different components of e-cigarettes, including food-safe liquid solvents and flavorings, can cause health issues related to pneumonia, pulmonary injury, and bronchiolitis. In addition, e-cigarettes contain alarmingly high levels of carcinogens and toxicants that may have long-lasting effects on other organ systems, including the development of neurological manifestations, lung cancer, cardiovascular disorders, and tooth decay. Despite the well- documented potential for harm, e-cigarettes do not appear to increase susceptibility to SARS-CoV- 2 infection. Furthermore, some studies have found that e-cigarette users experience improvements in lung health and minimal adverse effects. Therefore, more studies are needed to provide a definitive conclusion on the long-term safety of e-cigarettes. The purpose of this review is to inform the readers about the possible health-risks associated with the use of e-cigarettes, especially among the group of young and young-adults, from a molecular biology point of view.

7.
Curr Issues Mol Biol ; 44(5): 2122-2138, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1869490

ABSTRACT

Neutrophils play a pathogenic role in COVID-19 by releasing Neutrophils Extracellular Traps (NETs) or human neutrophil elastase (HNE). Given that HNE is inhibited by α1-antitrypsin (AAT), we aimed to assess the content of HNE, α1-antitrypsin (AAT) and HNE-AAT complexes (the AAT/HNE balance) in 33 bronchoalveolar lavage fluid (BALf) samples from COVID-19 patients. These samples were submitted for Gel-Electrophoresis, Western Blot and ELISA, and proteins (bound to AAT or HNE) were identified by Liquid Chromatography-Mass Spectrometry. NETs' release was analyzed by confocal microscopy. Both HNE and AAT were clearly detectable in BALf at high levels. Contrary to what was previously observed in other settings, the formation of HNE-AAT complex was not detected in COVID-19. Rather, HNE was found to be bound to acute phase proteins, histones and C3. Due to the relevant role of NETs, we assessed the ability of free AAT to bind to histones. While confirming this binding, AAT was not able to inhibit NET formation. In conclusion, despite the finding of a high burden of free and bound HNE, the lack of the HNE-AAT inhibitory complex in COVID-19 BALf demonstrates that AAT is not able to block HNE activity. Furthermore, while binding to histones, AAT does not prevent NET formation nor their noxious activity.

8.
Methods Mol Biol ; 2452: 227-258, 2022.
Article in English | MEDLINE | ID: covidwho-1844270

ABSTRACT

With the advent of the novel SARS-CoV-2, the entire world has been thrown into chaos with severe disruptions from a normal life. While the entire world was going chaotic, the researchers throughout the world were struggling to contribute to the best of their capabilities to advance the understanding of this new pandemic and fast track the development of novel therapeutics and vaccines. While various animal models have helped a lot to understand the basic physiology, nonhman primates have been promising and much more successful in modelling human diseases compared to other available clinical models. Here we describe the different aspects of modelling the SARS-CoV-2 infection in NHPs along with the associated methods used in NHP immunology.


Subject(s)
COVID-19 , Animals , Disease Models, Animal , Pandemics , Primates , SARS-CoV-2
9.
Front Immunol ; 13: 844727, 2022.
Article in English | MEDLINE | ID: covidwho-1834403

ABSTRACT

The immunopathological pulmonary mechanisms leading to Coronavirus Disease (COVID-19)-related death in adults remain poorly understood. Bronchoalveolar lavage (BAL) and peripheral blood sampling were performed in 74 steroid and non-steroid-treated intensive care unit (ICU) patients (23-75 years; 44 survivors). Peripheral effector SARS-CoV-2-specific T cells were detected in 34/58 cases, mainly directed against the S1 portion of the spike protein. The BAL lymphocytosis consisted of T cells, while the mean CD4/CD8 ratio was 1.80 in non-steroid- treated patients and 1.14 in steroid-treated patients. Moreover, strong BAL SARS-CoV-2 specific T-cell responses were detected in 4/4 surviving and 3/3 non-surviving patients. Serum IFN-γ and IL-6 levels were decreased in steroid-treated patients when compared to non-steroid treated patients. In the lung samples from 3 (1 non-ICU and 2 ICU) additional deceased cases, a lymphocytic memory CD4 T-cell angiopathy colocalizing with SARS-CoV-2 was also observed. Taken together, these data show that disease severity occurs despite strong antiviral CD4 T cell-specific responses migrating to the lung, which could suggest a pathogenic role for perivascular memory CD4 T cells upon fatal COVID-19 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Adult , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lung , SARS-CoV-2
11.
J Clin Virol Plus ; 2(2): 100067, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1693294

ABSTRACT

Accurate and rapid laboratory tests are essential for the prompt diagnosis of COVID-19, which is important to patients and infection control. The Xpert Xpress SARS-CoV-2 test is a real-time RT-PCR intended for the qualitative detection of nucleic acid from SARS-CoV-2 in upper respiratory specimens. In this study, we assessed the analytical performance characteristics of this rapid test for SARS-CoV-2 in 60 bronchoalveolar lavage (BAL) specimens. BAL is a specimen type that is not authorized under EUA for the Xpert Xpress SARS-CoV-2 test. The limit of detection of the Xpert Xpress SARS-CoV-2 test was 500 copies/ml. The overall agreement of the Xpert Xpress SARS-CoV-2 test was 100%. The Xpert Xpress SARS-CoV-2 test is sensitive and specific to aid in diagnosis of COVID-19 using bronchoalveolar lavage.

12.
Meta Gene ; 31: 100990, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1482826

ABSTRACT

BACKGROUND: Coronavirus disease 2019 is characterized by the elevation of a broad spectrum of inflammatory mediators associated with poor disease outcomes. We aimed at an in-silico analysis of regulatory microRNA and their transcription factors (TF) for these inflammatory genes that may help to devise potential therapeutic strategies in the future. METHODS: The cytokine regulating immune-expressed genes (CRIEG) were sorted from literature and the GEO microarray dataset. Their co-differentially expressed miRNA and transcription factors were predicted from publicly available databases. Enrichment analysis was done through mienturnet, MiEAA, Gene Ontology, and pathways predicted by KEGG and Reactome pathways. Finally, the functional and regulatory features were analyzed and visualized through Cytoscape. RESULTS: Sixteen CRIEG were observed to have a significant protein-protein interaction network. The ontological analysis revealed significantly enriched pathways for biological processes, molecular functions, and cellular components. The search performed in the miRNA database yielded ten miRNAs that are significantly involved in regulating these genes and their transcription factors. CONCLUSION: An in-silico representation of a network involving miRNAs, CRIEGs, and TF, which take part in the inflammatory response in COVID-19, has been elucidated. Thus, these regulatory factors may have potentially critical roles in the inflammatory response in COVID-19 and may be explored further to develop targeted therapeutic strategies and mechanistic validation.

13.
Pathogens ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1480904

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is an increasingly recognized complication of COVID-19 and is associated with significant over-mortality. We performed a retrospective monocentric study in patients admitted to the intensive care unit (ICU) for respiratory insufficiency due to COVID-19 from March to December 2020, in order to evaluate the incidence of CAPA and the associated risk factors. We also analysed the diagnostic approach used in our medical centre for CAPA diagnosis. We defined CAPA using recently proposed consensus definitions based on clinical, radiological and microbiological criteria. Probable cases of CAPA occurred in 9 out of 141 patients included in the analysis (6.4%). All cases were diagnosed during the second wave of the pandemic. We observed a significantly higher realization rate of bronchoalveolar lavage (BAL) (51.1% vs. 28.6%, p = 0.01) and Aspergillus testing (through galactomannan, culture, PCR) on BAL samples during the second wave (p < 0.0001). The testing for Aspergillus in patients meeting the clinical and radiological criteria of CAPA increased between the two waves (p < 0.0001). In conclusion, we reported a low but likely underestimated incidence of CAPA in our population. A greater awareness and more systematic testing for Aspergillus are necessary to assess the real incidence and characteristics of CAPA.

14.
Biomedicines ; 9(10)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438507

ABSTRACT

COVID-19 related morbidity and mortality have been often attributed to an exaggerated immune response. The role of cytokines and chemokines in COVID-19 and their contributions to illness severity are known, and thus their profiling from patient bronchoalveolar lavage (BAL) samples would help in understanding the disease progression. To date, limited studies have been performed on COVID-19 BAL samples, as the manipulation of such specimens (potentially containing live viruses) requires several laboratorial precautions, such as personnel training and special equipment, a requirement that not all laboratories can fulfil. Here, we assessed two fast and easily applicable methods (ultrafiltration and ultraviolet-C irradiation) for their impact on viral load removal or inactivation, respectively and on cytokine profiles preservation. Eight samples of BAL fluids from SARS-CoV2 patients with high viral load were tested. For both methods, complete removal was confirmed by lack of viral replication in Vero E6 cells and by RT-qPCR. Although both methods showed to remove completely the active SARS-CoV2 viral load, only UVC treatment has little or no quantitative effect on total cytokines/chemokines measurements, however cytokines profile and relative ratios are preserved or minimally altered when compared data obtained by the two different decontamination methods. Sample preparation and manipulation can greatly affect the analytical results; therefore, understanding if changes occurred after sample processing is of outmost importance for reliable data and can be useful to improve clinical practice.

15.
BMC Infect Dis ; 21(1): 926, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1398843

ABSTRACT

BACKGROUND: The ongoing SARS-CoV-2 pandemic requires the availability of accurate and rapid diagnostic tests, especially in such clinical settings as emergency and intensive care units. The objective of this study was to evaluate the diagnostic performance of the Vivalytic SARS-CoV-2 rapid PCR kit in lower respiratory tract (LRT) specimens. METHODS: Consecutive LRT specimens (bronchoalveolar lavage and bronchoaspirates) were collected from Intensive Care Units of San Martino Hospital (Genoa, Italy) between November 2020 and January 2021. All samples underwent RT-PCR testing by means of the Allplex™ SARS-CoV-2 assay (Seegene Inc., South Korea). On the basis of RT-PCR results, specimens were categorized as negative, positive with high viral load [cycle threshold (Ct) ≤ 30] and positive with low viral load (Ct of 31-35). A 1:1:1 ratio was used to achieve a sample size of 75. All specimens were subsequently tested by means of the Vivalytic SARS-CoV-2 rapid PCR assay (Bosch Healthcare Solutions GmbH, Germany). The diagnostic performance of this assay was assessed against RT-PCR through the calculation of accuracy, Cohen's κ, sensitivity, specificity and expected positive (PPV) and negative (NPV) predictive values. RESULTS: The overall diagnostic accuracy of the Vivalytic SARS-CoV-2 was 97.3% (95% CI: 90.9-99.3%), with an excellent Cohen's κ of 0.94 (95% CI: 0.72-1). Sensitivity and specificity were 96% (95% CI: 86.5-98.9%) and 100% (95% CI: 86.7-100%), respectively. In samples with high viral loads, sensitivity was 100% (Table 1). The distributions of E gene Ct values were similar (Wilcoxon's test: p = 0.070), with medians of 35 (IQR: 25-36) and 35 (IQR: 25-35) on Vivalytic and RT-PCR, respectively (Fig. 1). NPV and PPV was 92.6% and 100%, respectively. Table 1 Demographic characteristics and data sample type of the study cases (N = 75) Male, N (%) 56 (74.6%) Age (yr), Median (IQR) 65 (31-81) BAS, N (%) 43 (57.3%)  Negative 30.2%  Positive-High viral load [Ct ≤ 30] 27.9%  Positive-Low viral load [Ct 31-35] 41.9% BAL, N (%) 32 (42.7%)  Negative 37.5%  Positive-High viral load [Ct ≤ 30] 40.6%  Positive-Low viral load [Ct 31-35] 21.9% Data were expressed as proportions for categorical variables. Specimens were categorized into negative, positive with high viral load [cycle threshold (Ct) ≤ 30] and positive with low viral load (Ct of 31-35). BAS bronchoaspirates, BAL bronchoalveolar lavage, Ct cycle threshold Fig. 1 Distribution of E gene cycle threshold values of the rapid PCR and RT-PCR CONCLUSIONS: Vivalytic SARS-CoV-2 can be used effectively on LRT specimens following sample liquefaction. It is a feasible and highly accurate molecular procedure, especially in samples with high viral loads. This assay yields results in about 40 min, and may therefore accelerate clinical decision-making in urgent/emergency situations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , Pandemics , Respiratory System , Sensitivity and Specificity
17.
BMC Pulm Med ; 21(1): 278, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1381257

ABSTRACT

BACKGROUND: There are various reasons for delayed positive nasopharyngeal PCR tests for coronavirus disease 2019 (COVID19) in not only asymptomatic but also severely diseased patients. The pathophysiological attributes are not known. We explore this possibility through a case report. CASE PRESENTATION: A 64-year-old male with history of pulmonary fungal infection, asthma and chronic pulmonary obstructive disease (COPD), diabetes, coronary artery disease presented with shortness of breath, fever and chest image of ground opacity, reticular interstitial thickening, highly suspicious for COVID19. However, nasopharyngeal swab tests were discordantly negative for four times in two weeks, and IgG antibody for COVID19 was also negative. However, serum IgE level was elevated. No other pathogens are identified. His symptoms deteriorated despite corticosteroid, antibiotics and bronchodilator treatment. Bronchoalveolar lavage (BAL) and open lung wedge biopsy were performed for etiology diagnosis. They demonstrated COVID19 viral RNA positive fibrosing organizing pneumonia with respiratory tract damage characterized by suspicious viral cytopathic effect, mixed neutrophilic, lymphoplasmacytic, histiocytic and eosinophilic inflammation and fibrosis besides expected asthma and COPD change. One week later, repeated COVID19 nasopharyngeal tests on day 40 and day 49 became positive. CONCLUSION: Our case and literature review indicate that allergic asthma and associated high IgE level together with corticosteroid inhalation might contribute to the delayed positive nasopharyngeal swab in upper airway; COPD related chronic airways obstruction and the addition of fibrosis induced ventilator dependence and poor prognosis in COVID19 pneumonia, and should be therapeutically targeted besides antiviral therapy.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Delayed Diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Asthma/complications , Asthma/drug therapy , Asthma/pathology , Bronchoalveolar Lavage , COVID-19/complications , COVID-19/therapy , Fatal Outcome , Humans , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Reverse Transcriptase Polymerase Chain Reaction
18.
Cancer Cytopathol ; 129(8): 632-641, 2021 08.
Article in English | MEDLINE | ID: covidwho-1342873

ABSTRACT

BACKGROUND: Bronchoalveolar lavage (BAL) in patients with severe coronavirus disease 2019 (COVID-19) may provide additional and complementary findings for the management of these patients admitted to intensive care units (ICUs). This study addresses the cytological features of the infection and highlights the more influential inflammatory components. The correlation between pathological variables and clinical data is also analyzed. METHODS: The authors performed a retrospective analysis of the cytopathological features of BAL in 20 COVID-19 patients and 20 members of a matched cohort from a critical ICU who had acute respiratory distress syndrome caused by other pulmonary conditions. RESULTS: A comparison of the controls (n = 20) and the COVID-19 patients (n = 20) revealed that the latter had a higher neutrophil count (median, 63.8% of the cell count) with lower percentages of macrophages and lymphocytes. An increase in the expression of CD68-positive, monocytic multinucleated giant cells (MGCs) was reported; megakaryocytes were not detected on CD61 staining. Perls staining showed isolated elements. In situ RNA analysis demonstrated scattered chromogenic signals in type II pneumocytes. An ultrastructural analysis confirmed the presence of intracytoplasmic vacuoles containing rounded structures measuring 140 nm in diameter (putative viral particles). In COVID-19 patients, the clinicopathological correlation revealed a positive correlation between lactate dehydrogenase values and MGCs (r = 0.54). CONCLUSIONS: The analysis of BAL samples might be implemented as a routine practice for the evaluation of COVID-19 patients in ICUs in the appropriate clinical scenario. Additional studies using a larger sample size of patients who developed COVID-19 during the second wave of the epidemic in the autumn of 2020 are needed to further support our findings.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Adult , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Retrospective Studies , SARS-CoV-2
19.
Saudi J Biol Sci ; 28(11): 6653-6673, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1313430

ABSTRACT

Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.

20.
JTCVS Open ; 4: 107-114, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1281619

ABSTRACT

OBJECTIVE: In the United Kingdom, the coronavirus disease 2019 (COVID-19) pandemic has led to the cessation of elective surgery. However, there remains a need to provide urgent and emergency cardiac and thoracic surgery as well as to continue time-critical thoracic cancer surgery. This study describes our early experience of implementing a protocol to safely deliver major cardiac and thoracic surgery in the midst of the pandemic. METHODS: Data on all patients undergoing cardiothoracic surgery at a single tertiary referral center in London were prospectively collated during the first 7 weeks of lockdown in the United Kingdom. A comprehensive protocol was implemented to maintain a COVID-19-free environment including the preoperative screening of all patients, the use of full personal protective equipment in areas with aerosol-generating procedures, and separate treatment pathways for patients with and without the virus. RESULTS: A total of 156 patients underwent major cardiac and thoracic surgery over the study period. Operative mortality was 9% in the cardiac patients and 1.4% in thoracic patients. The preoperative COVID-19 protocol implemented resulted in 18 patients testing positive for COVID-19 infection and 13 patients having their surgery delayed. No patients who were negative for COVID-19 infection on preoperative screening tested positive postoperatively. However, 1 thoracic patient tested positive on intraoperative bronchoalveolar lavage. CONCLUSIONS: Our early experience demonstrates that it is possible to perform major cardiac and thoracic surgery with low operative mortality and zero development of postoperative COVID-19 infection.

SELECTION OF CITATIONS
SEARCH DETAIL